Calf Health
Rob Lynch, DVM

- Intro
- Treatment Protocols
- Neonatal Diarrhea
- Calf Pneumonia
- Other
- Immunology & Vaccines

Realizing Genetic Potential – Lifetime Profit

- Suboptimal Colostrum Feeding
- Poor Growth
- Neonatal Diarrhea
- Calf Pneumonia
- Delayed Conception
Are your LACT1 animals performing to their potential?

Cost Per Day
- Birth to Weaning: $6.50
- Weaning to Breeding: $2.00-$2.20
- Breeding to Calving: $2.60-$2.70

Inefficient heifer raising increase costs

Goal Setting
- Stillbirth %: <10%
- Calves dying in 1st 24-48hrs: <2%
- Calves dying 48hrs to Weaning: <5%

Ex: 1000 cow dairy with 30% Herd Turnover %, 50% Female Births

Improving Health, ↓ Replacement Costs

@8% SB, 2% PM, 4% Mortality before weaning
@12% SB, 4% PM, 8% Mortality before weaning

Plan on 122 more freshenings/yr
~$4000 additional expenses up to weaning (excludes tx cost)

Jason Karszes, Cornell University: PRO-DAIRY,
Average Total Heifer Raising Costs 17 NY Dairy Farms, 3rd Quarter 2012
McGuirk, Uof WI-Madison School of Vet Medicine: ASSESSMENT, SCORING AND DISEASE MANAGEMENT OF DAIRY CALVES

Figure 1: Average Heifer Raising Costs Per Day, 2012

Figure 1: Average Milk Production by LCTGP
Goals for Progressive Dairy Calf Programs

- Mortality less than 5%
- Morbidity (treatments) less than 10%
- Double birth weight by 56 days

Benchmarks

<table>
<thead>
<tr>
<th>Target Rates</th>
<th>Mortality</th>
<th>Diarrhea</th>
<th>Pneumonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hours to 60 days of age</td>
<td><5%</td>
<td><25%</td>
<td><10%</td>
</tr>
<tr>
<td>61 to 120 days of age</td>
<td><2%</td>
<td><2%</td>
<td><15%</td>
</tr>
<tr>
<td>121-180 days of age</td>
<td><1%</td>
<td><1%</td>
<td><2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Target Weight Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth to 60 Days</td>
<td>Double Weight</td>
</tr>
<tr>
<td>60 to 120 Days of Age</td>
<td>2.2 Lbs/Day</td>
</tr>
<tr>
<td>121 to 160 Days of Age</td>
<td>2.0 Lbs/Day</td>
</tr>
</tbody>
</table>
Reported Cause of Death

- Unknown reasons
- Other known reasons
- Joint or Naval
- Calving problems
- Injury
- Lameness
- Respiratory
- Diarrhea, or other digestive

Weaned Preweaned

Calf Exam

- **Goal:** collect enough information to consistently and confidently determine:
 - which calves qualify for medical treatment
 - which treatment protocol to apply
 - which calves need additional attention from management and/or vet
Normal Newborn Calf Parameters

- Reduced Calf Vitality
 - Pain, injury, inflammation
 - Hypoxia/acidosis
 - Impaired thermoregulation
 - Fetal blood loss
 - Fractures
 - Trauma

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal Rectal Temperature 102-103°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Resting Heart Rate</td>
<td>100-150 beats/min</td>
</tr>
<tr>
<td>Normal Resting Respiratory Rate</td>
<td>50-75 breaths/min</td>
</tr>
<tr>
<td>Mucous Membranes</td>
<td>pink, moist, CRT < 3sec</td>
</tr>
<tr>
<td>Muscle Tone</td>
<td>sit sternal w/i 5min, attempt to stand w/i 15 min, stand successfully w/i 60 min, ready to nurse w/i 2 hrs</td>
</tr>
</tbody>
</table>

High Risk Calves

- Dystocia or Poor Vitality @ Birth
- FPT
- Previous Disease History
- +/- High Value

1Dr. Sheila McGuirk, UofWI
Calf Exam

- Calf History
 - Treatment Eligible
 - Yes: Exam Findings
 - Normal: Nothing
 - Abnormal: Management / Vet Assessment
 - No: Flag for Cull or Euthanasia, Currently on Treatment
 - Diarrhea Protocol #1
 - Pneumonia Protocol #1
 - Abnormal Exam but Condition Unknown

Treatment Protocols

- Protocol Development
 - Protocol Implementation
 - Protocol Review
Veterinary Client Patient Relationship (VCPR)

- Veterinarian assumes responsibility for making medical judgments regarding the health of the patient with the assent
- Owner of the animal, or their duly authorized agent, agrees to follow the veterinarians guidance
- Veterinarian must:
 - have sufficient knowledge of the patient to initiate at least a general or preliminary diagnosis of the medical condition of the patient
 - be personally acquainted with the keeping and care of the patient by virtue of a timely examination of the patient by the veterinarian, or medically appropriate and timely visits to the operation where the patient is managed
 - be readily available for follow-up evaluation and oversight of treatment and outcomes, or has arranged for appropriate continuing care and treatment
 - maintain patient records

Health Records

Count of 1st PNEU by Month of Event
Treatment Records

- Required
- What:
 - Name of drug
 - Animal identity
 - Date of each administration
 - Dosage & Route
 - Length of the withdrawal period & date withdrawal period ends
 - Name of the person who gave the drug
- Retained 2 Years (3 Years NYS)
- Reviewed periodically
 - Completed correctly?
 - Following protocols?
 - Treatments failing?

No reason given
No withhold length or end date
No route
No name of person who gave the drug
Protocol compliance, Tx failure?
> Volume per site limitation

Necropsy

- Identify true cause of death, confirm health exam findings
- Identify preventive measures going forward
Neonatal Diarrhea

Calf Diarrhea Impact

- Higher Mortality Risk
- Treatment Costs
- Higher Risk for BRD
- Risk of Disease Spread
Common GI Pathogens

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Age</th>
<th>Treatment</th>
<th>Hygiene</th>
<th>Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Coli K99</td>
<td>1-7 Days</td>
<td>Supportive, +/- Antibiotic</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>4-28 Days</td>
<td>Supportive</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Coronavirus</td>
<td>4-42 Days</td>
<td>Supportive</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>7-35 Days</td>
<td>Supportive</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Giardia</td>
<td>14-28 Days</td>
<td>Supportive, Fenbendazole</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Salmonella</td>
<td>Any age</td>
<td>Supportive, +/- Antibiotic</td>
<td>✓ +/-</td>
<td></td>
</tr>
<tr>
<td>Coccidia</td>
<td>3-24 Weeks</td>
<td>Supportive</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Clostridium</td>
<td><8 Weeks</td>
<td>Highly Fatal</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Fecal Consistency Scores

<table>
<thead>
<tr>
<th>Fecal Consistency Score - McGuirk¹</th>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Semi-formed, pasty</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Loose, but stays on top of bedding</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Watery, sifts through bedding</td>
</tr>
</tbody>
</table>

¹McGuirk, University of Wisconsin – Madison School of Vet Med
Assessing hydration status

- Skin tenting is a quick way to evaluate hydration.
- Pinch a fold of skin on the neck and count the number of seconds it takes to flatten.
- If the skin flattens < 2 seconds, this indicates normal hydration.
- If the skin takes 2-6 seconds to flatten, the calf is about 8% dehydrated.
- Over 6 seconds would indicate severe dehydration over 10%.
- Gum color and moisture can also be evaluated. Normal gums will be pink and damp while white and dry gums indicate dehydration.

Guidelines for assessment of hydration status in calves with diarrhea

<table>
<thead>
<tr>
<th>Dehydration</th>
<th>Demeanor</th>
<th>Eyeball Recession</th>
<th>Skin Tent Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5%</td>
<td>Normal</td>
<td>None</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>6% - 8% (mild)</td>
<td>Slight depressed</td>
<td>2-4 mm</td>
<td>1 - 2 sec</td>
</tr>
<tr>
<td>8% - 10% (moderate)</td>
<td>Depressed</td>
<td>4-6 mm</td>
<td>2 - 5 sec</td>
</tr>
<tr>
<td>10% - 12% (severe)</td>
<td>Comatose</td>
<td>6-8 mm</td>
<td>5 - 10 sec</td>
</tr>
<tr>
<td>> 12%</td>
<td>Comatose/dead</td>
<td>8-12 mm</td>
<td>>10 sec</td>
</tr>
</tbody>
</table>

1Jennifer Bentley, Dairy Specialist, Iowa State University Extension and Outreach
Aims of oral rehydration therapy (ORT)

- Replace lost sodium and thus normalize the extracellular fluid volume (interstitial and intravascular volume spaces)
- Facilitate the uptake of sodium and water from the gastrointestinal tract (e.g., by providing glucose)
- Provide an alkalinizing agent or buffer to help correct the likely metabolic acidosis
- Provide an energy source for the calf (although this is rarely achieved with ORT alone).

When not to use Oral Rehydration Therapy

- Moderate to severe hypovolaemia (8-10% dehydration)
 - Decreased blood flow to GI tract
 - Decreased GI and absorption of fluids/electrolytes/nutrients
- Unable to stand (aspiration pneumonia risk)
- Lacking suck reflex
- Calves with obstructive gastrointestinal disease (“bloated”)
Oral Rehydration Therapy

- It is nearly impossible to feed the calf too much electrolytes, but feeding too little is quite common
- Determine the amount of electrolytes to feed:

\[
\text{Quarts of Liquid Needed Per Day} = \frac{\text{Calf Weight} \times \% \text{ Dehydrated}}{2}
\]

- Ex. 100-lb calf is dehydrated 8% (100 x 0.08), 8 lbs of liquid divided by 2 equals 4 quarts needed per day in addition to normal feeding of milk
- When > 90ºF increase amount by 50%. (>100ºF double the amount)

Oral Rehydration Therapy

- Electrolytes should be fed several hours after feeding whole milk or milk replacers containing significant amounts of skim milk or casein.\(^1\)
 - ingredients in electrolytes may impair the formation of the casein clot in the abomasum
 - can be fed along with milk (particularly those products that contain acetate or very low concentrations of bicarbonate)

Example ORT Schedule:

<table>
<thead>
<tr>
<th>Time</th>
<th>Milk / Milk Replacer</th>
<th>Electrolytes</th>
<th>Milk / Milk Replacer</th>
<th>Electrolytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 am</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 noon</td>
<td></td>
<td>Electrolytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Quigley, 2001
Diarrhea incidence reaches alarm level

- **Identify cause**
 - Adjust treatment protocol if necessary
 - Adjust preventive measures if indicated
- **Break cycle of disease**
 - Clean up
 - SOME PATHOGENS ZOONOTIC
 - Reduce additional exposure

Calf Pneumonia
Calf BRD Impact

- Higher Mortality Risk
- Slower Growth / Delayed Entry to Milking Herd
- Treatment Costs
- Lower Future Milk Production
- Risk of Disease Spread

Case Example: Calf Pneumonia

- 2016
 - Pneumonia Incidence ~70%
 - 5% Died
 - 53% of Remaining Calves Removed by 2019
- 2019
 - ~100 1st Lact Cows Remained
 - 305ME Comparison for DIM>90
 - No Calf Pneumonia vs. Calf Pneumonia

305ME Comparison for DIM>90:
- No Calf Pneumonia: 32137 Lb
- Calf Pneumonia: 31243 Lb
 - 894 Lb Diff
Respiratory System

Upper Airway:
- conduction, mucociliary apparatus, non-sterile

Lower Airway:
- gas exchange, air/blood barrier, sterile

Mucociliary Apparatus (Escalator)

- Ciliated Epithelium
- Goblet Cells – Mucus
- Mechanical sweeping of debris, bacteria, and viruses
Viral BRD

Bovine Respiratory Syncytial Virus
Bovine Herpesvirus-1 (IBR)
Bovine Viral Diarrhea Virus (BVDV)
Bovine Parainfluenza Virus-3

![Photo 1: Trachea Post BRSV Challenge](Photo 1)

![Photo 2: Healthy Lung](Photo 2)

![Photo 3: Diseased Lung Post BRSV Challenge](Photo 3)

1Photo Credits: John Ellis, John A. Ellis, DVM, PhD, University of Saskatchewan, Pfizer Animal Health

BVDV

![Diagram of BVDV infection cycle]

- Normal Healthy Calf
- Abortion / Stillbirth
- Weak or Deformed Calf
- Persistent Infection
- Virus Shedding
Bacterial Pneumonia

Mannheimia haemolytica
Pasteurella multocida
Histophilus somni
Mycoplasma bovis
Salmonella sp

Photo: Mycoplasma bovis

Calf Respiratory Disease Scoring
Dr. Sheila McGuirk
• Uncovered High Frequency of Subclinical Pneumonia
• Lower Body Weights in Affected Calves

BRD incidence reaches alarm level

• Identify cause
 • Adjust treatment protocol if necessary
 • Adjust preventive measures if indicated

• Break cycle of disease
 • Clean up
 • SOME PATHOGENS ZOONOTIC
 • Reduce additional exposure
Joint ill (navel illness)

• Infection enter umbilical cord at or soon after birth
• Navel ill—swollen, painful navel, abscess may develop (thick custard), may burst
• Joint ill—spread from navel via bloodstream to other parts of body, most commonly joints
• Prevention: Pen hygiene, naval dipping procedures, colostrum management

Dystocia Consequences

• Severe Dystocia Calves:¹
 • 1.7x > Risk of BRD
 • 1.3x > Risk of Digestive Disease
 • 6.7x > Risk of Mortality

¹ Lombard et al., 2007
Immunology & Vaccines
Biosecurity Bio containment

Friends don’t let friends be fomites
Anamnestic Response

<table>
<thead>
<tr>
<th>Time</th>
<th>Immune Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°</td>
<td></td>
</tr>
<tr>
<td>2°</td>
<td></td>
</tr>
</tbody>
</table>

* Memory

Passive vs. Active Immunity

Passive
- Immediate
- Short Lived
- No Memory
- Some Reactive
- Ex: antibodies, antitoxins

Active
- Delayed
- Long Lived
- Memory
- MLV Vaccines, Bacterins, Toxoids
MLV Vaccine

Pros
- Robust immune response
- No booster
- Lower risk of reaction
- Lower cost/dose

Cons
- Must handle carefully

Killed Virus Vaccine

Pros
- Higher cost/dose
- Must booster
- Narrower immune response
- Higher risk of reactions

Cons
- Convenient
- Safe in all animals
- No unused doses

* Some are safe to use in pregnant cows as long as label directions are followed.

‡ “Use entire contents when first opened.”

Vaccination Protocols

- **Risk Assessment**
 - Exposure possibilities
 - Facilities
 - Labor

- **Vaccine Selection**
 - Efficacy
 - Safety
 - Timing/Interval
Vaccine Insert

- Species, Production Class, Age, Pregnancy Status
- Dose, Route, Frequency (booster?)
- Warnings
- Storage, Expire Date
- USDA Withhold statement

Scours Vaccines

- Serum antibodies begin to move into the mammary gland 5-6 weeks prior to calving

3 Weeks Prior - Primary Vaccination for Springers
Dry Cow Booster
Age at vaccination

Window of Susceptibility

Endogenous Specific VN Antibodies

Protective titre against disease

Permissive titre for immunization

Specific Maternal Antibodies

Figure: Chase, et al, Vet Clin North Am Food Anim Pract. 2008

Common Findings

• Protocol Drift
 • New challenges
 • New products
 • New people

• Disorganization

• Improper Storage
 • 35–45°F
 • Door
 • Colostrum
 • Outdoors/Freezing
Common Findings

• No booster
• Mishandled MLV Vaccine
• Vaccination >85°F
• Endotoxin Overload
 • Limit Gm^- to 2

Gm^- Vaccines

<table>
<thead>
<tr>
<th>Leptospirosis</th>
<th>E. Coli Scours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannheimia</td>
<td>Salmonella</td>
</tr>
<tr>
<td>Coliform Mastitis</td>
<td>Clostridium</td>
</tr>
<tr>
<td>Histophilus</td>
<td>Pinkeye</td>
</tr>
</tbody>
</table>

Thank You

Robert A. Lynch, DVM
Dairy Herd Health & Management Specialist
Cornell University: PRO-DAIRY
607.882.5378
rlynch@cornell.edu